On level-2 condition number for the weighted Moore–Penrose inverse
نویسندگان
چکیده
منابع مشابه
On level-2 condition number for the weighted Moore-Penrose inverse
In this paper, we present characterizations for the level-2 condition number of the weighted Moore–Penrose inverse, i.e., condMN (A) ≤ cond [2] MN (A) ≤ condMN (A)+ 1, where condMN (A) is the condition number of the weighted Moore–Penrose inverse of a rectangular matrix and cond [2] MN (A) is the level-2 condition number of this problem. This paper extends the result by Cucker, Diao and Wei [F....
متن کاملCondition number of the W-weighted Drazin inverse
In this paper we get the explicit condition number formulas for the W–weighted Drazin inverse of a rectangular matrix using the Schur decomposition and the spectral norm. We characterize the spectral norm and the Frobenius norm of the relative condition number of the W– weighted Drazin inverse, and the level-2 condition number of the W– weighted Drazin inverse. The sensitivity for the W–weighte...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEstimation of a Condition Number Related to the Weighted Drazin Inverse
In this paper we get the formula for the condition number of the W -weighted Drazin inverse solution of a linear system WAWx = b, where A is a bounded linear operator between Hilbert spaces X and Y , W is a bounded linear operator between Hilbert spaces Y and X, x is an unknown vector in the range of (AW ) and b is a vector in the range of (WA). AMS Mathematics Subject Classification (2000): 47...
متن کاملCondition number of Bott-Duffin inverse and their condition numbers
Various normwise relative condition numbers that measure the sensitivity of Bott– Duffin inverse and the solution of constrained linear systems are characterized. The sensitivity of condition number itself is then investigated. Finally, upper bounds are derived for the sensitivity of componentwise condition numbers. 2002 Elsevier Science Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2007.06.005